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that & has an accumulation point in U and { €% is an isolated point. There
is a sequence (g;) of H converging to { locally uniformly on U. By our
assumpsion & is not empty and take a point x €. Then g; (x)—{ as j— o
and g;(x) €4 by the remark after Definition 2.1.5. So { belongs to U, for it
is an isolated point. Now g;({)—{ as j—° and ¢, ({) = for large enough j
because { is isolated. Also for each compact set K. g; maps K into a small
disc about { for large enough j. It follows that for large enough j, the point {
is an attracting fixed point of g;. Take a large enough number j and set g=
g;. For each yE4 the sequence (g”(y)) converges to { as n—00. Because {
is an isolated point, g" (y) = for each large enough n. So &< U,g *{{}, and
each point of & is isolated in U because {g"} is normal in U. This is a
contradiction.

If & has infinitely many points and there is no accumulation point of & in
U, then by the proof of Proposition 2.1.7, for any {E4 there is an element g

of H such that  C U ,g™"{{}. It is a problem whether this situation can
occur or not.

Conjecture 2.1.8. If 4 has infinitely many points, then A has an
accumulation point in U.

If this conjecture is true, by Proposition 2.1.7, it implies the following
conjecture.

Conjecture 2.1.9. If 4 has wnfinitely many points, then B is a perfect

sel. . . . . ..
®* Next we consider the nearly abelian semigroup in [HM1] and the limit

functions as an example.

Defintion 2.1.10. Let G be a rational semigroup containing an
element g with deg(g) = 2. We say that G is nearly abelian if there is a
compct family of Mobius (or linear fractional) transformations @ = {¢} with
the following properties.

¢ (F(G))=F(G) for all p€ED

* for all f, gEG there is a ¢ € D such that f g=¢g f

Then by [HM1], if g€G is of degree at least two, then J(G) =J(g). And it is
also shown in [HM1] that in each stable domain U, the type of each element
gE Gy such that deg(g) is at least two coincides. Here we define by the type
of gEGy the type of the connected component of F(g) containing U.

Let X be a subset of C that is not a round circle. We set

G=1{glg is a polynomial, J(g) =X}.

If G contains an element g such that deg(g) is at least two, then G is nearly
abelian and we can take a family @ of Definition 2.1.10 so that it contains
only finitely many elements.

Proposition 2.1.11. Let G be a nearly abelian rational semigroup, D the
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family in Definition 2.1.10 and U a stable domain. We set H=Gy and B={(E
Ul3 o€y (U), =08 If @ has only finitely many elements, then for any
element g of H,

BC U g " {fixed point of g™},

nm, 21 ntm< # 0+1

in particular, B has at most finitely many elements, Movover if B is not empty,
either all points of B belong to U or all points of B belong to O U.

Proof. Let a be an element of £5(U). Then there is a sequence (g;) of
mutually distinct elements of H converging to « locally uniformly on U. Let g
be any element of H. For every j there is an element ¢; € @ such that

99;= 9igi9.
We can assume that (¢;) converges to an element ¢ of @. Then
ga=glimgj=1im(0;gjg=(0ag.
]-—Om ]—5@

If a is identically equal to a constant value {E U, then

g0 =0(0).

There are some positive integers n, m with n+m < # @+1 such that g™ ({) is
a fixed point of g”. Now assume that BNU#* @ and BNOUF . Letx, y be
points of B N U, B N QU respectively. Then there is a sequence (h;) of
mustually distinct elements of H converging to y locally uniformly on U. The
sequence (h; (x)) converges to y as j7— and h; (x) belongs to # for each j,
this implies that # has infinitely many elements.

Example 2.1.12. Let n be integer such that #=>2 and we set f(z) =2"
+c, 0(z) =exp(®)z, and G=</, of, .., 6""'f>. Then G is nearly abelian. If
|c| is small enough, then O belongs to F (G). Let U be the stable domain
containing 0. Then

Ly (U) =10’ (20),7=0, ..., n—1}.

where zo is an attracting fixed point of f in U and # €5 (U) =n. Also there is
a number ¢ such that each element of £y (U) is a constant value of U and #

Example 2.1.13. Let m, n be integers greater than 1. We set f(z) =
2" (z—c), gz) =2"(z—c¢) +¢, G=<f, ¢». lilc| is small enough, then 0 and ¢
belong to the same connected componnt U of F(G). Now f(0), f(c) =0 and g
(0), g(c) =c and it implies that

P (U) =A@, @c}, where ¢o=0, ¢.=c.

Also G is not nearly abelian, for, the type of f in U is super attracting and
different from that of g.

2.2. No wandering domains. Now we consider hyperbolic rational
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semigrpups.

Defintion 2.2.1. Let G be a rational semigroup. We set

P(G) = U {critical values of g}

geG
and we say that G is hyperbolic if P(G) CF(G).

Remark. In [S3], it will be shown that the hyperbolicity and the
expandingness are equivalent if the semigroup is finitely generated and
satisfies that it contains an elememt with the degree at least two and each
Mobius transformation in it is not elliptic.

Definition 2.2.2. Let G a rational semigroup and U a component of F
(G). For every element of G, we denote by U, the connected component of F
(G) containing g (U). We say that U is a wandering domain if {U,} is
infinite.

Theorem 2.2.3 Let G a rational semigroup and U a wandering domain.
Then theve is a constant limit function ¢ of G on U taking its value Cin J(G).

Proof. We have a sequence (g;) in G such that it converges to a map ¢
locally uniformly on U and each Uy, is mutually disjoint. Now we assume ¢
is nonconstant. Then ¢(U) is an open subset of F(G) and this is a
contradiction because (g;) converges to ¢ and each Uy, is mutually disjoint.
So ¢ is constant. Now we assume the value { is in F(G). But this is also a
contradiction because for each large j component U, is included in the
component of F(G) containing {.

Now we show a sufficient condition so that there is no wandering
daomain.

Theorem 2.2.4. Let G be a rational semigroup and U a wandering
domain. Also let ¢ be a constant limit function of G on U taking its value { in
J(G). If there is an element of G such that the degree is at least two, then the
value {is in P(G).

Corollary 2.2.5. If G is a hyperbolic vational semigroup containing an
element of degree at least two, then theve is no wandeving domain of F(G).

Proof of Theorem We assume that there is an element of G such that the
degree is at least two. We will show that the value { is in P(G). We can
assume that P (G) contains at least three points. Assuming that  is not in
P(G), there is a simply connected neighborhood V of { disjoint from P(G).
Then for every gE€G, we can take all branches of ¢g~! that are well defined on
V. We denote by & the family of meromorphic functions on V such that each
element of & is a branch of the inverse of an element of G. Then & is a
normal family on V. Let (g;) be a sequence with g;|y— € compact uniformly
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and g; (U) C V for large j. Now we take a curve 7 in U containing at least
two points. For large j, we take a branch h; of g;™! on V such that it maps
g;(1) to 7. Now (g; (7)) converges to { and so for any neighborhood W of {
there is a number j such that ; (W) contains 7. But this is a contradiction
because (k;) is equicontinous.

Similarly we can show the following result.

Theorem 2.2.6. In the same situation as Theorem 1.2.3, assume that
every element of G is of degree one. For every point xE€C, we denote the closure of

G orbit of x by A (x). Then for all x EC but at most two points of G-fixed points,
¢ belongs to A (x).

Corollary 2.2.7. If every element of G is of degree one and there is a

point x €EC such that A (x) contains at least two points and is included in F (G),
then there is no wandering domain of F(G).

Next we consider limit functions of a hyperbolic rational semigroup on the
Fatou set.

Theorem 2.2.8. Let G be a finitely generated hyperbolic rational
semigroup which contains an element of degree at least two and assume that each
Mobius transformation in G is neither the identity nor an elliptic element. Then
for every compact subset K of F(G), the G-orbit of K can accumulate only to P(G)
and every limit function of G on F(G) is a localy constant function that takes its
value in P(G).

Proof. We denote by A the union of all components each of which has a
non-empty intersection with P(G). Let U be a component of F(G). By
Corollary 2.2.5. there are only finitely many elements in {U;},ec. Let h be
an element of G such that the degree is at least two. Let V be a component of
F(G) and suppose h (V) CV. Then the component of F(<h)>) that contains V
is an attracting basin of <#> and contains a critical point of & because G is
hyperbolic. So V has a non-empty intersection with P(G). We fix a system
of generators of G. It follows that for large positive integer m, if g€G is a
product of m generators of G, then U;CA. And so we have only to consider
the dynamics of G on A. We take the hyperbolic metric in each component of
A. For large positive integer m, every element of G which is a product of m
generators of G is a contraction map from A to A and the contraction rate is
bounded by a constant strictly less than one in each fixed compact subset of
A. Now the statement of the theorem follows immediately.

Proposition 2.2.9. Let G be a hyperbolic rational semigroup, U a stable
domain of G.  We set

H=Gy, dif{ceul ey (U), ¢={}.
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If A has infinitely many points, then d is a perfect set.

Proof. Because U is a stable domain, by definition, there is an element g
of H with the degree at least two. If we denote by V the connected component
of F(g) containing U, there is a critical point x € V of g and for large enough
n, the point g"(x) belongs to U. So P(G) NU# @. Assume that 4 NOUF* @ .
Then P(G) NOU#* @ and this is a contradiction because G is hyperbolic. So
ANOU= 0 and & has an accumulation point in U. By Proposition 2.1.7.
the statement follows.

2.3. Continuity of Julia sets.

Definition 2.3.1. Let E be a metric space. We denote by Comp* (E)
the set of non-empty compact subsets of E. For every A, B€E€ Comp*(E) we
set

0(4.B) =supld x,B) |x€A4)
and
du(AB) =max{0(A.B), d(B,A)}.

It is well known that dg is a distance on Comp* (E). We call it the Hausdorff
metric.

Next we consider if a Julia set depends continuously on the generators.
For the case of iterations of rational functions, see [D], [MSS] and [Mc].

Definition 2.3.2. Let M be a complex manifold. Suppose the map

(za) ECXMPf;4(2) €C

is holomorphic for each j =1, .., n. We set G4 = {f1,4, ..., fna>. Then we say
that {G4}senm is a holomorphic family of rational semigroups.

Remark. If a map F : C XM—C is holomorphic, then for each a €M the
map F(, a) is a rational map and deg(F ( , a)) is a constant function on M
when M is connected. For, if two maps f, g from S? to S? are continuous and
homotopic, then deg(f) = deg(g). Holomorphic families of usual iteration of
rational functions have been studied in [MSS]. It is well known that the set
of J-stable parameters is open and dense in the parameter space ([MSS],

Mc]).

Definition 2.3.3. Let G be a rational semigroup. We say that a
compact subset K of F(G) is a confinement set of G if for every zEF(G), for
all but finitely many elements g of G the point g (z) is included in K.

Theorem 2.3.4. Let {Ga} asem be a holomorphic family of rational
semigroups where Ga={fi,a, ..., fna’>. We assume that for a point b EM there is a
confinement set K of Gp. Then the map
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a=](G4) €Comp*(C)
1S cotinuous al the point a=>b with respect to the Hausdorff metric.
Proof. By Section 1. Lemma 1.1.5.6, for any £¢<O0 there is a finite set
Xo={x16, oo 2163 CJ(Gy)
of repelling fixed points of G, such that
0 (Gy), X»)) <e/2.

By the implicit function theorem, there is a neighgborhood W of b in M such
that for every a € W and for every j=1, ..., | there is a repelling fixed point
%j,a of G4 such that

d (x1,5, %5.0) <€/2.
For each a €W we set Xo={x14, ... 214}. Then
0(Xs, J(Ga)) (X, Xa) /2.
So
0(J(Gy),J(Ga)) <0(J(G), X») +0(X,, J(Ga)) <e.

Next, for every a €M we fix the generator system {fj.} of Go.. We denote by
A the union of all components of F (G,) that have a non empty intersection
with K and we take the hyperbolic metric in each coponent of A. Let & be a
positive number and K, the compact Za neighborhood of K in A and K; be the
compact a neighborhood of K in A. Then if we take the neighborhood W of b
smaller, there is an integer m such that for every a € W and for every integer
t satisfying m <t<2m every element g €EG, of a product of ¢ generators of G,
satisfies

g(Kz) CK,

So for every a € W and for every integer ¢ satisfying m <t every element
g€ G, of a product of ¢ generatosrs of G, satisfies the above. Now we take
the ¢ neighborhood O of J (G;) with respect to the chordal metric and we

denote by L the set C\O. And if we take W smaller again there is an integer
u such that for every a € W every element g €EG, of a product of u generators
of Gg satisfies that g (L) CK, and so L is included in F(Ga). So

0((Ga), J(Gy)) <e.

Hence a+J (G4) is continuous at the point b with respect to the Hausdorff
metric.

2.4. Strucural stability of hyperbolic rational semigroups.

Theorem 2.4.1. Let {Ga} aem be a holomorphic family of rational
semigroups wheve Ga=< f1,a, ..., fna>. Then
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1. Let b be a point of M. Assume that Gy is hyperbolic. And also assume
that deg (fi5) is at least two and each Mobus transformation in Gy is neither the
identity nor an elliptic element. Then there is an open neighborhood W of b such
that for every a € W the rational semigroup Gq is hyperbolic and the map a—] (Ga)
s continuous with respect to the Hausdorff metric.

2. Under the same assumption as 1, if the sets (f71(J(Gy)),); are mutually
disjoint, then theve is an open neighborhood V of b and a continuous map i .

C X V—C such that for every zE€ C the map a—i (z, a) is holomorphic, and for
every z—1 (z, a) is a quasiconformal homeomorphism of C mapping | (G,) onto

J(Ga).

Proof of 1. For every a € M we fix the generator system {fj. of Ga.
We denote by A the union of all components of F (G,) that have a non empty
intersection with K = P (G,) and we take the hyperbolic metric in each
component of A. Let a be a positive number and K, the compact 2«
neighborhood of K in A and K, the compact & neighborhood of K in A. Then
if we take a amall neighborhood W of b there is an interger m such that for
every a € W and for every integer t satisfying m <t <2m every element g€G,
of a product of t generators of G, satisfies

g(K;) CK,.

So for every a € W and for every integer t satisfying m <t every element
g€G, of a product of ¢t generators of G, satisfies the above. Now let @,
denote the union of all critical points of all generators of G,. Let L be a
relatively compact neighborhood of Q; in F (G,). If we take W smaller, for
every a€ W the set @, is in L. And we can assume that there is a positive
integer u# such that for every a € W every element g € G, of word length u
satisfies g (L) CK,. So for every a € W the set P(G,) is included in F(G4)
and so G, is hyperbolic. And from this fact combind with theorems 2.2.8,
2.3.4, it folows that the map a—J(G,) is continuous in W.

Proof of 2. We take a neighborhood W of b as above. We can assume

that W ia a polydisc and for each a € W the sets (fja(J(G,))); are mutually
disjoint. Let ¢ be a point of W and x a repelling fixed point of gc=fj;c °***°
fimec Where the number m is the word length of gc. Then there is an analytic
function x(a) in a small neithborhood U of ¢ in W such that x(a) is a repelling
fixed point of g, and x(c) =x. If ao is a point of U N W, then x(ao) is a
repelling fixed point of g,, because Gg, is hyperbolic. So we can take an
analytic continuation of x (a) throughout W such that x (a) is a repelling fixed
point of g,. Next if h, is an element of G4 such that the word length is at
most m and x(a) is a fixet point of it then h, is equal to g, because G, is
hyperbolic and the sets (fj+(J(G4))); are mutually disjoint. So by the A

lemma ([MSS], [BR], [ST]) and Lemma 1.1.5.6 the statement follows
immediately.
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2.5. Self-similarity of Julia sets. When G is genarated by a single
rational function f, we know that if all the critical points and in the immediate
attractive basin of a fixed point, then the Julia set is a Cantor set. Now we
consider the following situation similar to that.

Theorem 2.5.1. Let G = <fi1, .., fa> be a finitely generated rational
semigroup. Assume that G contains an element with the degree at least two and
each Mobius tmsformation in G is neither the identity nor an eliptic element. If
P(G) is included in a comnected component U of F(G), then there are simply
connected domains Vi, ..., Vi and mappings hi, ..., hs from W= U ;V; to W such
that for each j, i the map hj is a contraction map from Vi to a domain Vi with
respect to the hyperbolic metric with the rate of contraction bounded by a constant
strictly less than one throughout V; and

JG)ew, Un;(J(G) =] (G).

Proof. There is a relativery compact subfomain V of U including P(G).
For each positive integer m we denote by G, the subsemigroup of G generated
by all elements ¢i, .., g; of word length m. If we take a number m large
enough, then for each g€ G, g maps the closure of V into V. So the closure
of g7 (C\V) is included in C\V. Each connected component of C\V is
simply connected because V is connected. For each component of C\V we
take all branches of g~! on it. Then each branch is a contraction map on

each component of C\V with respect to the hyperbolic metric with the rate of
contraction bounded by a constant strictly less than one. Now from Lemma
1.1.4.2 and Lemma 1.1.5.1.

J(©) =1 Gw) = U g ((Gm)),

j=1
so the statement follows.

Remark. In the above proof, if we can take V as a simply connected
domain, then the Julia set is a self-similar set in C\V with respect to the
hyperbolic metric.

By Theorem 2.5.1 and the proof, we can show the following result.

Theorem 2.5.2 Let G = {f1, .., fa> be a finitely generated rational
semigroup. Asswme that deg(f1) is at least two. If P(G) is included in a

connected coponent U of F(G) and the sets {fi*(J (G))} jo1,..n are mutually
disjoint, then the Julia set J(G) is a Cantot set. '

Example 2.5.3. Let Ge=<%*+c, 22+ci>. Then J(G.) is a Cantor set
for sufficiently large positive number c.
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